Green function estimates for second order elliptic operators in non-divergence form

Jieming Wang

(Beijing Institute of Technology)

The 16th International Workshop on Markov Processes and Related Topics

12-16 July, 2021

Joint work with Professor Zhen-Qing Chen

Consider the following elliptic operator in non-divergence form on ℝ^d with d ≥ 3

$$\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).$$

- where $(a_{ij}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued uniformly elliptic function on \mathbb{R}^d and satisfies the Dini continuity condition.
- Question: What are the two-sided estimates of the \mathcal{L} -Green function $G_D(x, y)$ on a bounded $C^{1,1}$ domain D as well as its first and second order derivatives estimates?

Consider the following elliptic operator in non-divergence form on ℝ^d with d ≥ 3

$$\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).$$

- where $(a_{ij}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued uniformly elliptic function on \mathbb{R}^d and satisfies the Dini continuity condition.
- Question: What are the two-sided estimates of the \mathcal{L} -Green function $G_D(x, y)$ on a bounded $C^{1,1}$ domain D as well as its first and second order derivatives estimates?

Background: Green function for Δ on bounded $C^{1,1}$ domain

Probabilistic definition. The Green function G[∆]_D(x, y) is the occupation density of Brownian motion W on D. That is, for each f ∈ C[∞]_c(D),

$$\mathbb{E}_x \int_0^{\tau_D} f(W_s) \, ds = \int_D G_D^{\Delta}(x, y) f(y) \, dy.$$

• Analytic definition. Suppose D is a bounded domain and the boundary ∂D is regular. Suppose φ is locally Hölder continuous in D. Then

$$u(x) := G_D^{\Delta} \varphi(x) = \int_D G_D^{\Delta}(x, y) \varphi(y) \, dy$$

is the unique solution of the following Poisson equation

$$\begin{cases} \Delta u = -\varphi, & \text{in } D\\ u = 0, & \text{on } \partial D. \end{cases}$$

Background: Green function for Δ on bounded $C^{1,1}$ domain

Probabilistic definition. The Green function G[∆]_D(x, y) is the occupation density of Brownian motion W on D. That is, for each f ∈ C[∞]_c(D),

$$\mathbb{E}_x \int_0^{\tau_D} f(W_s) \, ds = \int_D G_D^{\Delta}(x, y) f(y) \, dy.$$

• Analytic definition. Suppose D is a bounded domain and the boundary ∂D is regular. Suppose φ is locally Hölder continuous in D. Then

$$u(x) := G_D^{\Delta} \varphi(x) = \int_D G_D^{\Delta}(x, y) \varphi(y) \, dy$$

is the unique solution of the following Poisson equation

$$\begin{cases} \Delta u = -\varphi, & \text{in } D \\ u = 0, & \text{on } \partial D. \end{cases}$$

Suppose *D* is a bounded $C^{1,1}$ domain with characteristics (R_0, Λ_0) in \mathbb{R}^d with $d \ge 3$.

Widman(1967) and Zhao(1986) proved that there is a constant C > 1 depending on (d, Λ₀, R₀, diam(D)) such that for x ≠ y in D,

$$\frac{C^{-1}}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|} \right) \le G_D^{\Delta}(x,y)$$
$$\le \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|} \right).$$

• For each $y \in D$, $G_D^{\Delta}(\cdot, y)$ is Δ -harmonic in $D \setminus \{y\}$. By the classical harmonic function theory, $G_D^{\Delta}(x, y)$ is a smooth function for $(x, y) \in D \times D \setminus diag$.

Suppose *D* is a bounded $C^{1,1}$ domain with characteristics (R_0, Λ_0) in \mathbb{R}^d with $d \ge 3$.

Widman(1967) and Zhao(1986) proved that there is a constant C > 1 depending on (d, Λ₀, R₀, diam(D)) such that for x ≠ y in D,

$$\frac{C^{-1}}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|} \right) \le G_D^{\Delta}(x,y)$$
$$\le \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|} \right).$$

• For each $y \in D$, $G_D^{\Delta}(\cdot, y)$ is Δ -harmonic in $D \setminus \{y\}$. By the classical harmonic function theory, $G_D^{\Delta}(x, y)$ is a smooth function for $(x, y) \in D \times D \setminus diag$.

By the derivative estimates of Δ -harmonic function in balls, there exists a constant $C = C(d, \Lambda_0, R_0, \operatorname{diam}(D))$ such that for any $x \neq y$ in D,

$$|\nabla_x G_D^{\Delta}(x,y)| \le \frac{C}{|x-y|^{d-1}} \left(1 \wedge \frac{\delta_D(y)}{|x-y|}\right);$$

and

$$\left|\frac{\partial^2}{\partial x_i \partial x_j} G_D^{\Delta}(x, y)\right| \le \frac{C}{|x - y|^d} \left(1 \wedge \frac{\delta_D(y)}{|x - y|}\right) \left(1 \wedge \frac{\delta_D(x)}{|x - y|}\right)^{-1}$$

.

Background: Divergence form elliptic operator

Let

$$\mathcal{L}^{0}f(x) = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial}{\partial x_{j}} \right) f(x).$$

be a uniformly elliptic operator with uniform ellipticity constant λ_0 .

• Grüter-Widman(1982) proved that when *D* is a bounded domain, there exists a unique function $G_D^0(x, y)$ such that for each $\phi \in C_c^{\infty}(D)$,

$$-(\mathcal{L}^0 G_D^0(\cdot, y), \phi) = \phi(y).$$

Moreover,

$$G_D^0(x,y) \le C(d,\lambda_0)|x-y|^{2-d}, \quad x \ne y \in D.$$

Background: Divergence form elliptic operator

Let

$$\mathcal{L}^{0}f(x) = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial}{\partial x_{j}} \right) f(x).$$

be a uniformly elliptic operator with uniform ellipticity constant λ_0 .

• Grüter-Widman(1982) proved that when *D* is a bounded domain, there exists a unique function $G_D^0(x, y)$ such that for each $\phi \in C_c^{\infty}(D)$,

$$-(\mathcal{L}^0 G_D^0(\cdot, \mathbf{y}), \phi) = \phi(\mathbf{y}).$$

Moreover,

$$G^0_D(x,y) \le C(d,\lambda_0)|x-y|^{2-d}, \quad x \ne y \in D.$$

• Furthermore, Grüter-Widman(1982) proved when *D* satisfies the exterior sphere condition and suppose *a_{ii}* satisfies the Dini condition, that is,

$$|a_{ij}(x) - a_{ij}(y)| \le \ell(|x - y|),$$

where $\ell(\cdot): [0,\infty) \to [0,\infty)$ is a monotonically increasing continuous function with $\ell(0) = 0$ and

$$\int_0^1 \ell(t)/t\,dt < \infty.$$

Then there is a constant $C = C(d, \lambda_0, \Lambda_0, R_0, \operatorname{diam}(D))$ such that for $x \neq y$ in D,

$$G_D^0(x,y) \le \frac{C^{-1}}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|} \right)$$

and

→ ★@ ▶ ★ 图 ▶ ★ 图 ▶

• Furthermore, Grüter-Widman(1982) proved when *D* satisfies the exterior sphere condition and suppose *a_{ii}* satisfies the Dini condition, that is,

$$|a_{ij}(x) - a_{ij}(y)| \le \ell(|x - y|),$$

where $\ell(\cdot):[0,\infty)\to[0,\infty)$ is a monotonically increasing continuous function with $\ell(0)=0$ and

$$\int_0^1 \ell(t)/t\,dt < \infty.$$

Then there is a constant $C = C(d, \lambda_0, \Lambda_0, R_0, \operatorname{diam}(D))$ such that for $x \neq y$ in D,

$$G_D^0(x,y) \le \frac{C^{-1}}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|} \right)$$

and

$$|
abla_x G_D^0(x,y)| \le C|x-y|^{1-n} \left(1 \wedge rac{\delta_D(x)}{|x-y|}
ight)$$

٠

Background: Non-divergence form elliptic operator

 Consider the following uniformly elliptic operator in non-divergence form on ℝ^d with d ≥ 3

$$\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).$$

- Unlike the case of divergence form operators that is uniformly elliptic and bounded, Bauman(1986) showed a counterexample that $G_D(x, y)$ for a bounded and smooth domain D may not be bounded by $c|x y|^{2-d}$ even when the coefficient a_{ij} is uniformly continuous.
- When a_{ij} , $1 \le i, j \le d$ are Hölder continuous, Hueber and Sieveking(1982) proved that the Green function of \mathcal{L} on bounded $C^{1,1}$ domain is comparable to the Green function of Δ .

Background: Non-divergence form elliptic operator

 Consider the following uniformly elliptic operator in non-divergence form on ℝ^d with d ≥ 3

$$\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).$$

- Unlike the case of divergence form operators that is uniformly elliptic and bounded, Bauman(1986) showed a counterexample that $G_D(x, y)$ for a bounded and smooth domain *D* may not be bounded by $c|x-y|^{2-d}$ even when the coefficient a_{ij} is uniformly continuous.
- When a_{ij} , $1 \le i, j \le d$ are Hölder continuous, Hueber and Sieveking(1982) proved that the Green function of \mathcal{L} on bounded $C^{1,1}$ domain is comparable to the Green function of Δ .

Background: Non-divergence form elliptic operator

 Consider the following uniformly elliptic operator in non-divergence form on ℝ^d with d ≥ 3

$$\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).$$

- Unlike the case of divergence form operators that is uniformly elliptic and bounded, Bauman(1986) showed a counterexample that $G_D(x, y)$ for a bounded and smooth domain D may not be bounded by $c|x-y|^{2-d}$ even when the coefficient a_{ij} is uniformly continuous.
- When a_{ij} , $1 \le i, j \le d$ are Hölder continuous, Hueber and Sieveking(1982) proved that the Green function of \mathcal{L} on bounded $C^{1,1}$ domain is comparable to the Green function of Δ .

• Suppose a_{ij} satisfies the Dini condition, Hwang and S. Kim (2020) proved that there is a non-negative Green function $G_D^{\mathcal{L}}(x, y)$ on $D \times D \setminus \text{diag of } \mathcal{L}$ on any bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$ in the sense that for any $f \in L^p(D)$ with p > d/2,

$$u(x) := G_D^{\mathcal{L}} f(x) = \int_D G_D^{\mathcal{L}}(x, y) f(y) dy$$

is in $W^{2,p}(D) \cap W^{1,p}_0(D)$ and is a strong solution for

$$\begin{cases} \mathcal{L}u = -f & \text{in } D\\ u = 0 & \text{on } \partial D \end{cases}$$

• Furthermore, Hwang and Kim(2020) proved that

$$G_D^{\mathcal{L}}(x, y) \le C|x - y|^{2-d}$$
$$|\nabla_x G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{1-d}$$

Moreover, if D is a bounded $C^{2,\text{Dini}}$ domain,

$$|\nabla_x^2 G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{-d},$$

where $C = C(d, \lambda_0, R_0, \Lambda_0, \operatorname{diam}(D))$.

Question:

What are the sharp estimates of $G_D^{\mathcal{L}}(x, y)$ on a bounded $C^{1,1}$ domain? What about the first and second derivative estimates?

• Furthermore, Hwang and Kim(2020) proved that

$$G_D^{\mathcal{L}}(x, y) \le C|x - y|^{2-d}$$
$$|\nabla_x G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{1-d}$$

Moreover, if D is a bounded $C^{2,\text{Dini}}$ domain,

$$|\nabla_x^2 G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{-d},$$

where
$$C = C(d, \lambda_0, R_0, \Lambda_0, \operatorname{diam}(D))$$
.

Question:

What are the sharp estimates of $G_D^{\mathcal{L}}(x, y)$ on a bounded $C^{1,1}$ domain? What about the first and second derivative estimates?

 Consider the following elliptic operator in non-divergence form on ℝ^d with d ≥ 3

$$\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x),$$

• Suppose $(a_{ij}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued function on \mathbb{R}^d and there exists a constant $\lambda_0 \ge 1$ such that for all $x \in \mathbb{R}^d$ and $\xi \in \mathbb{R}^d$,

$$\lambda_0^{-1} |\xi|^2 \le \sum_{i,j=1}^d a_{ij}(x) \xi_i \xi_j \le \lambda_0 |\xi|^2.$$

Moreover, $a_{ij}(x)$ satisfies the ℓ -Dini continuity condition.

 Consider the following elliptic operator in non-divergence form on ℝ^d with d ≥ 3

$$\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x),$$

• Suppose $(a_{ij}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued function on \mathbb{R}^d and there exists a constant $\lambda_0 \ge 1$ such that for all $x \in \mathbb{R}^d$ and $\xi \in \mathbb{R}^d$,

$$\lambda_0^{-1} |\xi|^2 \le \sum_{i,j=1}^d a_{ij}(x) \xi_i \xi_j \le \lambda_0 |\xi|^2.$$

Moreover, $a_{ij}(x)$ satisfies the ℓ -Dini continuity condition.

- Since A(x) is uniformly continuous, bounded and uniformly elliptic, the martingale problem for $(\mathcal{L}, C_c^{\infty}(\mathbb{R}^d))$ is well posed and its solution forms a conservative strong Markov process *X* that has continuous sample paths and strong Feller property.
- We call $G_D(x, y)$ is a Green function of X in D, or equivalently, of \mathcal{L} on D, if for any non-negative $f \in C_c(D)$,

$$\mathbb{E}_{x}\left[\int_{0}^{\tau_{D}} f(X_{s})ds\right] = \int_{D} G_{D}(x, y)f(y)dy \quad \text{for every } x \in D.$$

- Since A(x) is uniformly continuous, bounded and uniformly elliptic, the martingale problem for $(\mathcal{L}, C_c^{\infty}(\mathbb{R}^d))$ is well posed and its solution forms a conservative strong Markov process *X* that has continuous sample paths and strong Feller property.
- We call $G_D(x, y)$ is a Green function of X in D, or equivalently, of \mathcal{L} on D, if for any non-negative $f \in C_c(D)$,

$$\mathbb{E}_x\left[\int_0^{\tau_D} f(X_s)ds\right] = \int_D G_D(x,y)f(y)dy \quad \text{for every } x \in D.$$

Theorem (Chen-W., 2021):

Suppose *D* is a bounded $C^{1,1}$ domain with characteristics (R_0, Λ_0) . There is a unique jointly continuous non-negative function $G_D(x, y) = G_D^{\mathcal{L}}(x, y)$ on $D \times D \setminus$ diag of the process *X*. Moreover, there exist $K_i = K_i(d, \lambda_0, \ell, R_0, \Lambda_0, \operatorname{diam}(D)) > 1, i = 1, 2, 3$ such that

$$K_1^{-1}G_D^{\Delta}(x,y) \le G_D(x,y) \le K_1G_D^{\Delta}(x,y);$$

(ii)

(i)

$$|\nabla_x G_D(x, y)| \le \frac{K_2}{|x - y|^{d - 1}} \left(1 \land \frac{\delta_D(y)}{|x - y|} \right);$$

(iii)

$$\left|\frac{\partial^2}{\partial x_i \partial x_j} G_D(x, y)\right| \le \frac{K_3}{|x - y|^d} \left(1 \wedge \frac{\delta_D(y)}{|x - y|}\right) \left(1 \wedge \frac{\delta_D(x)}{|x - y|}\right)^{-1}$$

By Hwang-Kim(2020), for each $f \in L^q(D)$ with q > d,

$$u(x) := G_D^{\mathcal{L}} f(x) = \int_D G_D^{\mathcal{L}}(x, y) f(y) \, dy$$

is in $W^{2,q}(D) \cap C(\overline{D})$ and is a strong solution of

$$\begin{cases} \mathcal{L}u = -f \quad \text{in } D; \\ u = 0 \quad \text{on } \partial D. \end{cases}$$

(4 個) (4 回) (4 回) (

Let $f \in C_c(D)$ and $u(x) := G_D^{\mathcal{L}} f(x)$ Let $u_{\varepsilon} = u * \psi_{\varepsilon}$ be the mollifier of u. By Ito's formula,

$$\mathbb{E}_{x}\left[u_{\varepsilon}(X_{t\wedge\tau_{D_{\varepsilon_{0}}}})\right] - u_{\varepsilon}(x) = \mathbb{E}_{x}\left[\int_{0}^{t\wedge\tau_{D_{\varepsilon_{0}}}} \mathcal{L}u_{\varepsilon}(X_{s})ds\right]$$
$$= \mathbb{E}_{x}\left[\int_{0}^{t\wedge\tau_{D_{\varepsilon_{0}}}} -f * \psi_{\varepsilon}(X_{s})ds\right], x \in D_{\varepsilon_{0}}.$$

By taking $t \to \infty, \varepsilon \to 0$ and letting $\varepsilon_0 \to 0$,

$$G_D^{\mathcal{L}}f(x) = u(x) = \mathbb{E}_x \left[\int_0^{\tau_D} f(X_s) ds \right], \quad x \in D.$$

Then

 $G_D(x,y) = G_D^{\mathcal{L}}(x,y).$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

Let $f \in C_c(D)$ and $u(x) := G_D^{\mathcal{L}} f(x)$ Let $u_{\varepsilon} = u * \psi_{\varepsilon}$ be the mollifier of u. By Ito's formula,

$$\mathbb{E}_{x}\left[u_{\varepsilon}(X_{t\wedge\tau_{D_{\varepsilon_{0}}}})\right] - u_{\varepsilon}(x) = \mathbb{E}_{x}\left[\int_{0}^{t\wedge\tau_{D_{\varepsilon_{0}}}} \mathcal{L}u_{\varepsilon}(X_{s})ds\right]$$
$$= \mathbb{E}_{x}\left[\int_{0}^{t\wedge\tau_{D_{\varepsilon_{0}}}} -f * \psi_{\varepsilon}(X_{s})ds\right], x \in D_{\varepsilon_{0}}.$$

By taking $t \to \infty, \varepsilon \to 0$ and letting $\varepsilon_0 \to 0$,

$$G_D^{\mathcal{L}}f(x) = u(x) = \mathbb{E}_x \left[\int_0^{\tau_D} f(X_s) ds \right], \quad x \in D.$$

Then

$$G_D(x,y) = G_D^{\mathcal{L}}(x,y).$$

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Define for each fixed $z \in \mathbb{R}^d$,

$$\mathcal{L}^{(z)} := \sum_{i,j=1}^d a_{ij}(z) \frac{\partial^2}{\partial x_i \partial x_j}.$$

For each fixed $z \in \mathbb{R}^d$, denote by $G_D^{(z)}$ the Green function of $\mathcal{L}^{(z)}$ in *D*. We search for Green function $G_D(x, y)$ of \mathcal{L} in *D* of the following form:

$$G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz$$

for some function $g_D(x, y)$.

Define for each fixed $z \in \mathbb{R}^d$,

$$\mathcal{L}^{(z)} := \sum_{i,j=1}^d a_{ij}(z) \frac{\partial^2}{\partial x_i \partial x_j}.$$

For each fixed $z \in \mathbb{R}^d$, denote by $G_D^{(z)}$ the Green function of $\mathcal{L}^{(z)}$ in *D*. We search for Green function $G_D(x, y)$ of \mathcal{L} in *D* of the following form:

$$G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz$$

for some function $g_D(x, y)$.

Define for each fixed $z \in \mathbb{R}^d$,

$$\mathcal{L}^{(z)} := \sum_{i,j=1}^d a_{ij}(z) \frac{\partial^2}{\partial x_i \partial x_j}.$$

For each fixed $z \in \mathbb{R}^d$, denote by $G_D^{(z)}$ the Green function of $\mathcal{L}^{(z)}$ in *D*. We search for Green function $G_D(x, y)$ of \mathcal{L} in *D* of the following form:

$$G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz$$

for some function $g_D(x, y)$.

$$G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz$$

Formally applying \mathcal{L} on both sides in x, we have

$$\begin{aligned} -\delta_{\{y\}}(x) &= \mathcal{L}^{(x)}G_D^{(y)}(\cdot, y)(x) + \mathcal{L}^{(x)}\int_D G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy \\ &= \mathcal{L}^{(y)}G_D^{(y)}(\cdot, y)(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) \\ &+ \int_D (\mathcal{L}^{(z)} + (\mathcal{L}^{(x)} - \mathcal{L}^{(z)}))G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy \\ &= -\delta_{\{y\}}(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) - g_D(x, y) \\ &+ \int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)})G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy. \end{aligned}$$

Here $\delta_{\{v\}}$ stands for the Dirac measure concentrated at y.

イロト イポト イヨト イヨト

$$G_D(x,y) = G_D^{(y)}(x,y) + \int_D G_D^{(z)}(x,z)g_D(z,y)dz$$

Formally applying \mathcal{L} on both sides in x, we have

$$\begin{aligned} -\delta_{\{y\}}(x) &= \mathcal{L}^{(x)}G_D^{(y)}(\cdot, y)(x) + \mathcal{L}^{(x)}\int_D G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy \\ &= \mathcal{L}^{(y)}G_D^{(y)}(\cdot, y)(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) \\ &+ \int_D (\mathcal{L}^{(z)} + (\mathcal{L}^{(x)} - \mathcal{L}^{(z)}))G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy \\ &= -\delta_{\{y\}}(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) - g_D(x, y) \\ &+ \int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)})G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy. \end{aligned}$$

Here $\delta_{\{y\}}$ stands for the Dirac measure concentrated at y.

< ロ > < 同 > < 回 > < 回 > < 回 > <

We obtain

$$g_D(x,y) = (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) + \int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)})G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy.$$

Setting

$$g_D^{(0)}(x,y) := (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot,y)(x),$$

we see that $g_D(x, y)$ should satisfy the following integral equation

$$g_D(x,y) = g_D^{(0)}(x,y) + \int_D g_D^{(0)}(x,z)g_D(z,y)dz.$$

イロト イポト イヨト イヨト

We obtain

$$g_D(x, y) = (\mathcal{L}^{(x)} - \mathcal{L}^{(y)}) G_D^{(y)}(\cdot, y)(x) + \int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)}) G_D^{(z)}(\cdot, z)(x) g_D(z, y) dy.$$

Setting

$$g_D^{(0)}(x,y) := (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot,y)(x),$$

we see that $g_D(x, y)$ should satisfy the following integral equation

$$g_D(x,y) = g_D^{(0)}(x,y) + \int_D g_D^{(0)}(x,z)g_D(z,y)dz.$$

< 向

Applying the above equation recursively, it motives us to define

$$g_D(x,y) := \sum_{k=0}^{\infty} g_D^{(k)}(x,y)$$

whenever it converges, where

$$g_D^{(k+1)}(x,y) := \int_D g_D^{(0)}(x,z) g_D^{(k)}(z,y) dz$$
 for $k \ge 0$.

Lemma 1:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exist constants $C_k = C_k(d, \lambda_0, \Lambda_0, R_0, \operatorname{diam}(D)) \ge 1, k = 1, 2, 3$, such that for every $\lambda > 0, z \in \mathbb{R}^d$ and $x \neq y$ in λD ,

$$\begin{aligned} G_{\lambda D}^{(z)}(x,y) &\asymp \frac{1}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_{\lambda D}(x)}{|x-y|} \right) \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x-y|} \right); \\ |\nabla_x G_{\lambda D}^{(z)}(x,y)| &\leq \frac{C_2}{|x-y|^{d-1}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x-y|} \right); \\ \frac{\partial^2}{\partial x_i \partial x_j} G_{\lambda D}^{(z)}(x,y) \bigg| &\leq \frac{C_3}{|x-y|^d} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x-y|} \right) \left(1 \wedge \frac{\delta_{\lambda D}(x)}{|x-y|} \right)^{-1}. \end{aligned}$$

Lemma 2:

There exist positive constants $\theta = \theta(d, \lambda_0, \ell, \Lambda_0, R_0, \operatorname{diam}(D)) \in (0, 1)$ and $C = C(d, \lambda_0, \ell, \Lambda_0, R_0, \operatorname{diam}(D))$ such that for any $\lambda \in (0, \theta]$,

$$g_{\lambda D}(x,y) := \sum_{k=0}^{\infty} g_{\lambda D}^{(k)}(x,y)$$

converges absolutely and locally uniformly on $(\lambda D) \times (\lambda D) \setminus \text{diag with}$

$$|g_{\lambda D}(x,y)| \le \sum_{k=0}^{\infty} |g_{\lambda D}^{(k)}(x,y)| \le C \frac{\ell(|x-y|)}{|x-y|^d} \frac{\delta_{\lambda D}(y)}{\delta_{\lambda D}(x)} \quad \text{for } x \neq y \in \lambda D.$$

$$G_{\lambda D}(x,y) = G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x \neq y \in \lambda D.$$

• Define

$$\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x \neq y \in \lambda D.$$

• For each $C_c^{\infty}(\lambda D)$ function ψ , $\tilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \tilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W_{loc}^{2,p}(\lambda D)$ for any p > 1 and

$$\left(egin{array}{ccc} \mathcal{L}\widetilde{G}_{\lambda D}\psi &=-\psi & ext{in} & \lambda D \ \widetilde{G}_{\lambda D}\psi &=0 & ext{on} & \partial(\lambda D). \end{array}
ight.$$

$$G_{\lambda D}(x,y) = G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x \neq y \in \lambda D.$$

Define

$$\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z) g_{\lambda D}(z,y) dz, \quad x \neq y \in \lambda D.$$

• For each $C_c^{\infty}(\lambda D)$ function ψ , $\widetilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \widetilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W_{loc}^{2,p}(\lambda D)$ for any p > 1 and

$$\begin{cases} \mathcal{L}\widetilde{G}_{\lambda D}\psi &= -\psi \quad \text{in} \quad \lambda D\\ \widetilde{G}_{\lambda D}\psi &= 0 \quad \text{on} \quad \partial(\lambda D). \end{cases}$$

$$G_{\lambda D}(x,y) = G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x \neq y \in \lambda D.$$

Define

$$\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z) g_{\lambda D}(z,y) dz, \quad x \neq y \in \lambda D.$$

• For each $C_c^{\infty}(\lambda D)$ function ψ , $\widetilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \widetilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W_{loc}^{2,p}(\lambda D)$ for any p > 1 and

$$\begin{cases} \mathcal{L}\widetilde{G}_{\lambda D}\psi = -\psi \quad \text{in} \quad \lambda D\\ \widetilde{G}_{\lambda D}\psi = 0 \quad \text{on} \quad \partial(\lambda D). \end{cases}$$

$$G_{\lambda D}(x,y) = G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x \neq y \in \lambda D.$$

Define

$$\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z) g_{\lambda D}(z,y) dz, \quad x \neq y \in \lambda D.$$

• For each $C_c^{\infty}(\lambda D)$ function ψ , $\widetilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \widetilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W_{loc}^{2,p}(\lambda D)$ for any p > 1 and

$$\begin{cases} \mathcal{L}\widetilde{G}_{\lambda D}\psi = -\psi \quad \text{in} \quad \lambda D\\ \widetilde{G}_{\lambda D}\psi = 0 \quad \text{on} \quad \partial(\lambda D). \end{cases}$$

By Levi's freezing formula, we obtain

Lemma:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exist positive constants $C = C(d, \lambda_0, \ell, R_0, \Lambda_0, \operatorname{diam}(D))$ and $\theta = \theta(d, \lambda_0, \ell, R_0, \Lambda_0, \operatorname{diam}(D))$ such that for any $\lambda \in (0, \theta]$,

$$G_{\lambda D}(x,y) \leq \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x-y|}\right) \quad \text{on } (\lambda D) \times (\lambda D) \setminus \text{diag}$$

and for any $\gamma \geq 1$,

$$G_{\lambda D}(x,y) \ge rac{C}{|x-y|^{d-2}} \left(1 \wedge rac{\delta_{\lambda D}(y)}{|x-y|}\right) \quad ext{on } |x-y| \le \gamma \delta_{\lambda D}(x).$$

By Levi's freezing formula, we obtain

Lemma:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exist positive constants $C = C(d, \lambda_0, \ell, R_0, \Lambda_0, \operatorname{diam}(D))$ and $\theta = \theta(d, \lambda_0, \ell, R_0, \Lambda_0, \operatorname{diam}(D))$ such that for any $\lambda \in (0, \theta]$,

$$G_{\lambda D}(x,y) \leq \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x-y|}\right) \quad \text{on } (\lambda D) \times (\lambda D) \setminus \text{diag}$$

and for any $\gamma \geq 1$,

$$G_{\lambda D}(x,y) \ge rac{C}{|x-y|^{d-2}} \left(1 \wedge rac{\delta_{\lambda D}(y)}{|x-y|}\right) \quad ext{on } |x-y| \le \gamma \delta_{\lambda D}(x).$$

Boundary decay rate of $G_D(x, y)$ in x

• For each subdomain V with $D \setminus \overline{V} \neq \emptyset$,

 $G_D(x,y) = \mathbb{E}_x [G_D(X_{\tau_V}, y); \tau_V < \tau_D] \text{ for every } x \in V \text{ and } y \in D \setminus \overline{V}.$

• By the test function argument in Chen-Kim-Song-Vondracek(2012) for $\Delta + \Delta^{\alpha/2}$, we obtain

Lemma:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . Let $r_0 := \frac{R_0}{4\sqrt{1+\Lambda_0^2}}$. There are constants $\delta_0 = \delta_0(d, \lambda_0, R_0, \Lambda_0) \in (0, r_0)$ and $C_k = C_k(d, \lambda_0, R_0, \Lambda_0)$, k = 1, 2, such that for any $\lambda_1 > 1, Q \in \partial D$, and $x \in D_Q(\delta_0/\lambda_1, r_0/\lambda_1)$ with $\tilde{x} = 0$,

$$\mathbb{P}_{x}\left(X_{\tau_{D_{Q}}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})}\in D\right)\leq C_{1}\lambda_{1}\delta_{D}(x),$$

$$\mathbb{P}_{x}\left(X_{\tau_{D_{\mathcal{Q}}}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})}\in U_{\mathcal{Q}}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})\right)\geq C_{2}\lambda_{1}\delta_{D}(x).$$

Boundary decay rate of $G_D(x, y)$ in x

• For each subdomain V with $D \setminus \overline{V} \neq \emptyset$,

 $G_D(x,y) = \mathbb{E}_x [G_D(X_{\tau_V}, y); \tau_V < \tau_D]$ for every $x \in V$ and $y \in D \setminus \overline{V}$.

• By the test function argument in Chen-Kim-Song-Vondracek(2012) for $\Delta + \Delta^{\alpha/2}$, we obtain

Lemma:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . Let $r_0 := \frac{R_0}{4\sqrt{1+\Lambda_0^2}}$. There are constants $\delta_0 = \delta_0(d, \lambda_0, R_0, \Lambda_0) \in (0, r_0)$ and $C_k = C_k(d, \lambda_0, R_0, \Lambda_0)$, k = 1, 2, such that for any $\lambda_1 > 1, Q \in \partial D$, and $x \in D_Q(\delta_0/\lambda_1, r_0/\lambda_1)$ with $\tilde{x} = 0$,

$$\mathbb{P}_{x}\left(X_{\tau_{D_{\mathcal{Q}}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})}}\in D\right)\leq C_{1}\lambda_{1}\delta_{D}(x),$$

$$\mathbb{P}_{x}\left(X_{\tau_{D_{\mathcal{Q}}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})}}\in U_{\mathcal{Q}}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})\right)\geq C_{2}\lambda_{1}\delta_{D}(x).$$

Theorem:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exists a positive constant $C = C(d, \lambda_0, \ell, \Lambda_0, R_0, \operatorname{diam}(D)) \ge 1$ and $\theta = \theta(d, \lambda_0, R_0, \Lambda_0, \operatorname{diam}(D))$ such that for any $r \in (0, \theta]$,

 $C^{-1}G^{\Delta}_{\lambda D}(x,y) \leq G_{\lambda D}(x,y) \leq CG^{\Delta}_{\lambda D}(x,y) \quad \text{for } x \neq y \in \lambda D.$

Theorem:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exists a positive constant $C = C(d, \lambda_0, \ell, \Lambda_0, R_0, \operatorname{diam}(D)) \ge 1$

 $C^{-1}G_D^{\Delta}(x,y) \leq G_D(x,y) \leq CG_D^{\Delta}(x,y) \quad \text{for } x \neq y \in D.$

- By taking derivative on both sides of Levi's freezing formula, we can obtain the upper bounded estimate of the first derivative $|\nabla_x G_D(x, y)|$.
- However, this method does not work well for the second order derivative estimates on $G_D(x, y)$. We use the second derivative estimate

$$|\nabla_x^2 G_B(x, y)| \le c|x - y|^{-d}$$

on balls from Hwang-Kim(2020) and an integral representation of the Green function of \mathcal{L} on small balls to obtain the upper bound estimate of the second order derivative $|D_x^2 G_D(x, y)|$.

- By taking derivative on both sides of Levi's freezing formula, we can obtain the upper bounded estimate of the first derivative $|\nabla_x G_D(x, y)|$.
- However, this method does not work well for the second order derivative estimates on $G_D(x, y)$. We use the second derivative estimate

$$|\nabla_x^2 G_B(x, y)| \le c|x - y|^{-d}$$

on balls from Hwang-Kim(2020) and an integral representation of the Green function of \mathcal{L} on small balls to obtain the upper bound estimate of the second order derivative $|D_x^2 G_D(x, y)|$.

Thank you for your attention!