Green function estimates for second order elliptic operators in non-divergence form

Jieming Wang (Beijing Institute of Technology)

The 16th International Workshop on Markov Processes and Related Topics

12-16 July, 2021

Joint work with Professor Zhen-Qing Chen

Consider the following elliptic operator in non-divergence form on R *d* with $d \geq 3$

$$
\mathcal{L}f(x) = \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).
$$

- where $(a_{ii}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued uniformly elliptic function on \mathbb{R}^d and satisfies the Dini continuity condition.
- Question: What are the two-sided estimates of the L-Green function $G_D(x, y)$ on a bounded $C^{1,1}$ domain *D* as well as its first and second order derivatives estimates?

Consider the following elliptic operator in non-divergence form on R *d* with $d \geq 3$

$$
\mathcal{L}f(x) = \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).
$$

- where $(a_{ii}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued uniformly elliptic function on \mathbb{R}^d and satisfies the Dini continuity condition.
- Question: What are the two-sided estimates of the $\mathcal{L}\text{-Green function }G_D(x, y)$ on a bounded $C^{1,1}$ domain *D* as well as its first and second order derivatives estimates?

Background: Green function for ∆ on bounded *C* ¹,¹ domain

Probabilistic definition. The Green function $G_D^{\Delta}(x, y)$ is the occupation density of Brownian motion *W* on *D*. That is, for each $f \in C_c^{\infty}(D)$,

$$
\mathbb{E}_x \int_0^{\tau_D} f(W_s) \, ds = \int_D G_D^{\Delta}(x, y) f(y) \, dy.
$$

• Analytic definition. Suppose *D* is a bounded domain and the boundary ∂D is regular. Suppose φ is locally Hölder continuous in D. Then

$$
u(x) := G_D^{\Delta} \varphi(x) = \int_D G_D^{\Delta}(x, y) \varphi(y) \, dy
$$

is the unique solution of the following Poisson equation

$$
\begin{cases} \Delta u = -\varphi, & \text{in } D \\ u = 0, & \text{on } \partial D. \end{cases}
$$

Background: Green function for ∆ on bounded *C* ¹,¹ domain

Probabilistic definition. The Green function $G_D^{\Delta}(x, y)$ is the occupation density of Brownian motion *W* on *D*. That is, for each $f \in C_c^{\infty}(D)$,

$$
\mathbb{E}_x \int_0^{\tau_D} f(W_s) \, ds = \int_D G_D^{\Delta}(x, y) f(y) \, dy.
$$

Analytic definition. Suppose *D* is a bounded domain and the boundary ∂D is regular. Suppose φ is locally Hölder continuous in *D*. Then

$$
u(x) := G_D^{\Delta} \varphi(x) = \int_D G_D^{\Delta}(x, y) \varphi(y) \, dy
$$

is the unique solution of the following Poisson equation

$$
\begin{cases} \Delta u = -\varphi, & \text{in} \quad D \\ u = 0, & \text{on} \quad \partial D. \end{cases}
$$

*ロト→個→→ *目→ *目→

Suppose *D* is a bounded $C^{1,1}$ domain with characteristics (R_0, Λ_0) in \mathbb{R}^d with $d \geq 3$.

• Widman(1967) and Zhao(1986) proved that there is a constant $C > 1$ depending on $(d, \Lambda_0, R_0, \text{diam}(D))$ such that for $x \neq y$ in *D*,

$$
\frac{C^{-1}}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|}\right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|}\right) \le G_D^{\Delta}(x, y)
$$

$$
\le \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|}\right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|}\right).
$$

For each $y \in D$, $G_D^{\Delta}(\cdot, y)$ is Δ -harmonic in $D \setminus \{y\}$. By the classical harmonic function theory, $G_D^{\Delta}(x, y)$ is a smooth function for $(x, y) \in D \times$ $D \setminus diag$.

④ ライミト イヨト

Suppose *D* is a bounded $C^{1,1}$ domain with characteristics (R_0, Λ_0) in \mathbb{R}^d with $d \geq 3$.

• Widman(1967) and Zhao(1986) proved that there is a constant $C > 1$ depending on $(d, \Lambda_0, R_0, \text{diam}(D))$ such that for $x \neq y$ in *D*,

$$
\frac{C^{-1}}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|}\right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|}\right) \le G_D^{\Delta}(x, y)
$$

$$
\le \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x-y|}\right) \left(1 \wedge \frac{\delta_D(y)}{|x-y|}\right).
$$

For each $y \in D$, $G_D^{\Delta}(\cdot, y)$ is Δ -harmonic in $D \setminus \{y\}$. By the classical harmonic function theory, $G_D^{\Delta}(x, y)$ is a smooth function for $(x, y) \in D \times$ $D \setminus diag$.

By the derivative estimates of Δ -harmonic function in balls, there exists a constant $C = C(d, \Lambda_0, R_0, \text{diam}(D))$ such that for any $x \neq y$ in *D*,

$$
|\nabla_x G_D^{\Delta}(x, y)| \leq \frac{C}{|x - y|^{d-1}} \left(1 \wedge \frac{\delta_D(y)}{|x - y|} \right);
$$

and

$$
\left|\frac{\partial^2}{\partial x_i \partial x_j} G_D^{\Delta}(x, y)\right| \leq \frac{C}{|x - y|^d} \left(1 \wedge \frac{\delta_D(y)}{|x - y|}\right) \left(1 \wedge \frac{\delta_D(x)}{|x - y|}\right)^{-1}.
$$

4 0 3

Background: Divergence form elliptic operator

• Let

$$
\mathcal{L}^{0}f(x) = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial}{\partial x_{j}} \right) f(x).
$$

be a uniformly elliptic operator with uniform ellipticity constant λ_0 .

• Grüter-Widman(1982) proved that when D is a bounded domain, there exists a unique function $G_D^0(x, y)$ such that for each $\phi \in C_c^{\infty}(D)$,

$$
-(\mathcal{L}^0 G_D^0(\cdot,y),\phi)=\phi(y).
$$

Moreover,

$$
G_D^0(x, y) \le C(d, \lambda_0)|x - y|^{2-d}, \quad x \ne y \in D.
$$

Background: Divergence form elliptic operator

• Let

$$
\mathcal{L}^{0}f(x) = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial}{\partial x_{j}} \right) f(x).
$$

be a uniformly elliptic operator with uniform ellipticity constant λ_0 .

• Grüter-Widman(1982) proved that when D is a bounded domain, there exists a unique function $G_D^0(x, y)$ such that for each $\phi \in C_c^{\infty}(D)$,

$$
-(\mathcal{L}^0 G_D^0(\cdot, y), \phi) = \phi(y).
$$

Moreover,

$$
G_D^0(x, y) \le C(d, \lambda_0)|x - y|^{2-d}, \quad x \ne y \in D.
$$

• Furthermore, Grüter-Widman(1982) proved when D satisfies the exterior sphere condition and suppose a_{ij} satisfies the Dini condition, that is,

$$
|a_{ij}(x)-a_{ij}(y)|\leq \ell(|x-y|),
$$

where $\ell(\cdot) : [0, \infty) \to [0, \infty)$ is a monotonically increasing continuous function with $\ell(0) = 0$ and

$$
\int_0^1 \ell(t)/t \, dt < \infty.
$$

Then there is a constant $C = C(d, \lambda_0, \Lambda_0, R_0, \text{diam}(D))$ such that for $x \neq 0$ *y* in *D*,

$$
G_D^0(x, y) \le \frac{C^{-1}}{|x - y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x - y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x - y|} \right)
$$

 $|\nabla_x G_D^0(x, y)| \leq C|x-y|^{1-n} \left(1 \wedge \frac{\delta_D(x)}{|x-y|}\right)$

|*x* − *y*|

.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ .

• Furthermore, Grüter-Widman(1982) proved when D satisfies the exterior sphere condition and suppose a_{ij} satisfies the Dini condition, that is,

$$
|a_{ij}(x)-a_{ij}(y)|\leq \ell(|x-y|),
$$

where $\ell(\cdot) : [0, \infty) \to [0, \infty)$ is a monotonically increasing continuous function with $\ell(0) = 0$ and

$$
\int_0^1 \ell(t)/t\,dt < \infty.
$$

Then there is a constant $C = C(d, \lambda_0, \Lambda_0, R_0, \text{diam}(D))$ such that for $x \neq 0$ *y* in *D*,

$$
G_D^0(x, y) \le \frac{C^{-1}}{|x - y|^{d-2}} \left(1 \wedge \frac{\delta_D(x)}{|x - y|} \right) \left(1 \wedge \frac{\delta_D(y)}{|x - y|} \right)
$$

and

$$
|\nabla_x G_D^0(x, y)| \le C|x - y|^{1 - n} \left(1 \wedge \frac{\delta_D(x)}{|x - y|}\right)
$$

.

Background: Non-divergence form elliptic operator

Consider the following uniformly elliptic operator in non-divergence form on \mathbb{R}^d with $d \geq 3$

$$
\mathcal{L}f(x) = \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).
$$

- Unlike the case of divergence form operators that is uniformly elliptic and bounded, Bauman(1986) showed a counterexample that $G_D(x, y)$ for a bounded and smooth domain *D* may not be bounded by $c|x-y|^{2-d}$ even when the coefficient a_{ij} is uniformly continuous.
- When a_{ii} , $1 \le i, j \le d$ are Hölder continuous, Hueber and Sieveking(1982) proved that the Green function of $\mathcal L$ on bounded $C^{1,1}$ domain is comparable to the Green function of Δ .

Background: Non-divergence form elliptic operator

Consider the following uniformly elliptic operator in non-divergence form on \mathbb{R}^d with $d \geq 3$

$$
\mathcal{L}f(x) = \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).
$$

- Unlike the case of divergence form operators that is uniformly elliptic and bounded, Bauman(1986) showed a counterexample that $G_D(x, y)$ for a bounded and smooth domain *D* may not be bounded by $c|x-y|^{2-d}$ even when the coefficient a_{ij} is uniformly continuous.
- When a_{ii} , $1 \le i, j \le d$ are Hölder continuous, Hueber and Sieveking(1982) proved that the Green function of $\mathcal L$ on bounded $C^{1,1}$ domain is comparable to the Green function of Δ .

◆ロトメ部トメ君トメ君ト

Background: Non-divergence form elliptic operator

Consider the following uniformly elliptic operator in non-divergence form on \mathbb{R}^d with $d \geq 3$

$$
\mathcal{L}f(x) = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x).
$$

- Unlike the case of divergence form operators that is uniformly elliptic and bounded, Bauman(1986) showed a counterexample that $G_D(x, y)$ for a bounded and smooth domain *D* may not be bounded by $c|x-y|^{2-d}$ even when the coefficient a_{ij} is uniformly continuous.
- When a_{ij} , $1 \le i, j \le d$ are Hölder continuous, Hueber and Sieveking(1982) proved that the Green function of $\mathcal L$ on bounded $C^{1,1}$ domain is comparable to the Green function of Δ .

K ロ K K 御 K K 君 K K 君 K …

• Suppose a_{ij} satisfies the Dini condition, Hwang and S. Kim (2020) proved that there is a non-negative Green function $G_D^{\mathcal{L}}(x, y)$ on $D \times D \setminus \text{diag of } \mathcal{L}$ on any bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$ in the sense that for any $f \in L^p(D)$ with $p > d/2$,

$$
u(x) := G_D^{\mathcal{L}}f(x) = \int_D G_D^{\mathcal{L}}(x, y)f(y)dy
$$

is in $W^{2,p}(D)$ ∩ $W_0^{1,p}$ $\int_0^{1,p}(D)$ and is a strong solution for

$$
\begin{cases}\n\mathcal{L}u = -f & \text{in} \quad D \\
u = 0 & \text{on} \quad \partial D.\n\end{cases}
$$

• Furthermore, Hwang and Kim(2020) proved that

$$
G_D^{\mathcal{L}}(x, y) \le C|x - y|^{2 - d}
$$

$$
|\nabla_x G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{1 - d}
$$

Moreover, if *D* is a bounded *C* ²,Dini domain,

$$
|\nabla_x^2 G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{-d},
$$

where $C = C(d, \lambda_0, R_0, \Lambda_0, \text{diam}(D)).$

What are the sharp estimates of $G_D^{\mathcal{L}}(x, y)$ on a bounded $C^{1,1}$ domain? What about the first and second derivative estimates?

• Furthermore, Hwang and Kim(2020) proved that

$$
G_D^{\mathcal{L}}(x, y) \le C|x - y|^{2-d}
$$

$$
|\nabla_x G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{1-d}
$$

Moreover, if *D* is a bounded *C* ²,Dini domain,

$$
|\nabla_x^2 G_D^{\mathcal{L}}(x, y)| \le C|x - y|^{-d},
$$

where
$$
C = C(d, \lambda_0, R_0, \Lambda_0, \text{diam}(D)).
$$

Question:

What are the sharp estimates of $G_D^{\mathcal{L}}(x, y)$ on a bounded $C^{1,1}$ domain? What about the first and second derivative estimates?

Our setting

Consider the following elliptic operator in non-divergence form on R *d* with $d \geq 3$

$$
\mathcal{L}f(x) = \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x),
$$

• Suppose $(a_{ij}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued function on \mathbb{R}^d and there exists a constant $\lambda_0 \geq 1$ such that for all $x \in \mathbb{R}^d$ and $\xi \in \mathbb{R}^d$,

$$
\lambda_0^{-1}|\xi|^2 \le \sum_{i,j=1}^d a_{ij}(x)\xi_i\xi_j \le \lambda_0|\xi|^2.
$$

Moreover, $a_{ii}(x)$ satisfies the ℓ -Dini continuity condition.

Our setting

Consider the following elliptic operator in non-divergence form on R *d* with $d \geq 3$

$$
\mathcal{L}f(x) = \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x),
$$

• Suppose $(a_{ij}(x))_{1 \le i,j \le d}$ is a symmetric $d \times d$ matrix-valued function on \mathbb{R}^d and there exists a constant $\lambda_0 \geq 1$ such that for all $x \in \mathbb{R}^d$ and $\xi \in \mathbb{R}^d$,

$$
\lambda_0^{-1}|\xi|^2 \le \sum_{i,j=1}^d a_{ij}(x)\xi_i\xi_j \le \lambda_0|\xi|^2.
$$

Moreover, $a_{ii}(x)$ satisfies the ℓ -Dini continuity condition.

- \bullet Since $A(x)$ is uniformly continuous, bounded and uniformly elliptic, the martingale problem for $(L, C_c^{\infty}(\mathbb{R}^d))$ is well posed and its solution forms a conservative strong Markov process *X* that has continuous sample paths and strong Feller property.
- \bullet We call $G_D(x, y)$ is a Green function of X in D, or equivalently, of L on *D*, if for any non-negative $f \in C_c(D)$,

$$
\mathbb{E}_x\left[\int_0^{\tau_D} f(X_s)ds\right] = \int_D G_D(x,y)f(y)dy \text{ for every } x \in D.
$$

- \bullet Since $A(x)$ is uniformly continuous, bounded and uniformly elliptic, the martingale problem for $(L, C_c^{\infty}(\mathbb{R}^d))$ is well posed and its solution forms a conservative strong Markov process *X* that has continuous sample paths and strong Feller property.
- We call $G_D(x, y)$ is a Green function of *X* in *D*, or equivalently, of $\mathcal L$ on *D*, if for any non-negative $f \in C_c(D)$,

$$
\mathbb{E}_x\left[\int_0^{\tau_D} f(X_s)ds\right] = \int_D G_D(x,y)f(y)dy \quad \text{for every } x \in D.
$$

Theorem (Chen-W., 2021):

Suppose *D* is a bounded $C^{1,1}$ domain with characteristics (R_0, Λ_0) . There is a unique jointly continuous non-negative function $G_D(x, y) = G_D^{\mathcal{L}}(x, y)$ on $D \times D \setminus$ diag of the process *X*. Moreover, there exist K_i = $K_i(d, \lambda_0, \ell, R_0, \Lambda_0, \text{diam}(D)) > 1, i = 1, 2, 3$ such that (i)

$$
K_1^{-1}G_D^{\Delta}(x, y) \le G_D(x, y) \le K_1G_D^{\Delta}(x, y);
$$

(ii)

$$
|\nabla_x G_D(x,y)| \leq \frac{K_2}{|x-y|^{d-1}} \left(1 \wedge \frac{\delta_D(y)}{|x-y|}\right);
$$

(iii)

$$
\left|\frac{\partial^2}{\partial x_i \partial x_j} G_D(x, y)\right| \le \frac{K_3}{|x - y|^d} \left(1 \wedge \frac{\delta_D(y)}{|x - y|}\right) \left(1 \wedge \frac{\delta_D(x)}{|x - y|}\right)^{-1}
$$

.

By Hwang-Kim(2020), for each $f \in L^q(D)$ with $q > d$,

$$
u(x) := G_D^{\mathcal{L}} f(x) = \int_D G_D^{\mathcal{L}}(x, y) f(y) \, dy
$$

is in $W^{2,q}(D)\cap C(\overline D)$ and is a strong solution of

$$
\begin{cases}\n\mathcal{L}u = -f \quad \text{in} \quad D; \\
u = 0 \quad \text{on} \quad \partial D.\n\end{cases}
$$

④ イヨ メ ヨ メ ス ヨ メー

Let $f \in C_c(D)$ and $u(x) := G_D^{\mathcal{L}}f(x)$ Let $u_{\varepsilon} = u * \psi_{\varepsilon}$ be the mollifier of *u*. By Ito's formula,

$$
\mathbb{E}_x \left[u_{\varepsilon}(X_{t \wedge \tau_{D_{\varepsilon_0}}}) \right] - u_{\varepsilon}(x) = \mathbb{E}_x \left[\int_0^{t \wedge \tau_{D_{\varepsilon_0}}} \mathcal{L} u_{\varepsilon}(X_s) ds \right]
$$

=
$$
\mathbb{E}_x \left[\int_0^{t \wedge \tau_{D_{\varepsilon_0}}} -f * \psi_{\varepsilon}(X_s) ds \right], x \in D_{\varepsilon_0}.
$$

By taking $t \to \infty$, $\varepsilon \to 0$ and letting $\varepsilon_0 \to 0$,

$$
G_{D}^{\mathcal{L}}f(x) = u(x) = \mathbb{E}_{x}\left[\int_{0}^{\tau_{D}} f(X_{s})ds\right], \quad x \in D.
$$

Then

◆ロト → 伊ト → ヨト → ヨト

Let $f \in C_c(D)$ and $u(x) := G_D^{\mathcal{L}}f(x)$ Let $u_{\varepsilon} = u * \psi_{\varepsilon}$ be the mollifier of *u*. By Ito's formula,

$$
\mathbb{E}_x \left[u_{\varepsilon}(X_{t \wedge \tau_{D_{\varepsilon_0}}}) \right] - u_{\varepsilon}(x) = \mathbb{E}_x \left[\int_0^{t \wedge \tau_{D_{\varepsilon_0}}} \mathcal{L} u_{\varepsilon}(X_s) ds \right]
$$

=
$$
\mathbb{E}_x \left[\int_0^{t \wedge \tau_{D_{\varepsilon_0}}} -f * \psi_{\varepsilon}(X_s) ds \right], x \in D_{\varepsilon_0}.
$$

By taking $t \to \infty$, $\varepsilon \to 0$ and letting $\varepsilon_0 \to 0$,

$$
G_{D}^{\mathcal{L}}f(x) = u(x) = \mathbb{E}_{x}\left[\int_{0}^{\tau_{D}} f(X_{s})ds\right], \quad x \in D.
$$

Then

 $G_D(x, y) = G_D^{\mathcal{L}}(x, y).$

メ母 トメ 君 トメ 君 トッ

Define for each fixed $z \in \mathbb{R}^d$,

$$
\mathcal{L}^{(z)} := \sum_{i,j=1}^d a_{ij}(z) \frac{\partial^2}{\partial x_i \partial x_j}.
$$

For each fixed $z \in \mathbb{R}^d$, denote by $G_D^{(z)}$ $D_D^{(z)}$ the Green function of $\mathcal{L}^{(z)}$ in *D*. We search for Green function $G_D(x, y)$ of $\mathcal L$ in *D* of the following form:

$$
G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz
$$

for some function $g_D(x, y)$.

Define for each fixed $z \in \mathbb{R}^d$,

$$
\mathcal{L}^{(z)} := \sum_{i,j=1}^d a_{ij}(z) \frac{\partial^2}{\partial x_i \partial x_j}.
$$

For each fixed $z \in \mathbb{R}^d$, denote by $G_D^{(z)}$ $D_D^{(z)}$ the Green function of $\mathcal{L}^{(z)}$ in *D*. We search for Green function $G_D(x, y)$ of $\mathcal L$ in *D* of the following form:

$$
G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz
$$

for some function $g_D(x, y)$.

Define for each fixed $z \in \mathbb{R}^d$,

$$
\mathcal{L}^{(z)} := \sum_{i,j=1}^d a_{ij}(z) \frac{\partial^2}{\partial x_i \partial x_j}.
$$

For each fixed $z \in \mathbb{R}^d$, denote by $G_D^{(z)}$ $D_D^{(z)}$ the Green function of $\mathcal{L}^{(z)}$ in *D*. We search for Green function $G_D(x, y)$ of $\mathcal L$ in D of the following form:

$$
G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz
$$

for some function $g_D(x, y)$.

$$
G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz
$$

Formally applying $\mathcal L$ on both sides in x , we have

$$
-\delta_{\{y\}}(x) = \mathcal{L}^{(x)}G_D^{(y)}(\cdot, y)(x) + \mathcal{L}^{(x)}\int_D G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy
$$

\n
$$
= \mathcal{L}^{(y)}G_D^{(y)}(\cdot, y)(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x)
$$

\n
$$
+ \int_D (\mathcal{L}^{(z)} + (\mathcal{L}^{(x)} - \mathcal{L}^{(z)}))G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy
$$

\n
$$
= -\delta_{\{y\}}(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) - g_D(x, y)
$$

\n
$$
+ \int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)})G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy.
$$

Here δ{*y*} stands for the Dirac measure concentrated at *y*.

э

イロトメ部 トメ君 トメ君 トッ

$$
G_D(x, y) = G_D^{(y)}(x, y) + \int_D G_D^{(z)}(x, z) g_D(z, y) dz
$$

Formally applying $\mathcal L$ on both sides in x , we have

$$
-\delta_{\{y\}}(x) = \mathcal{L}^{(x)}G_D^{(y)}(\cdot, y)(x) + \mathcal{L}^{(x)}\int_D G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy
$$

\n
$$
= \mathcal{L}^{(y)}G_D^{(y)}(\cdot, y)(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x)
$$

\n
$$
+ \int_D (\mathcal{L}^{(z)} + (\mathcal{L}^{(x)} - \mathcal{L}^{(z)}))G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy
$$

\n
$$
= -\delta_{\{y\}}(x) + (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) - g_D(x, y)
$$

\n
$$
+ \int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)})G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy.
$$

Here δ_{y} stands for the Dirac measure concentrated at *y*.

э

イロト イ押 トイヨ トイヨ トー

We obtain

$$
g_D(x, y) = (\mathcal{L}^{(x)} - \mathcal{L}^{(y)}) G_D^{(y)}(\cdot, y)(x)
$$

+
$$
\int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)}) G_D^{(z)}(\cdot, z)(x) g_D(z, y) dy.
$$

Setting

$$
g_D^{(0)}(x,y) := (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot,y)(x),
$$

we see that $g_D(x, y)$ should satisfy the following integral equation

$$
g_D(x, y) = g_D^{(0)}(x, y) + \int_D g_D^{(0)}(x, z) g_D(z, y) dz.
$$

← ロ ▶ ← 伊

Þ

メイラメイラメ

We obtain

$$
g_D(x,y) = (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot, y)(x) + \int_D (\mathcal{L}^{(x)} - \mathcal{L}^{(z)})G_D^{(z)}(\cdot, z)(x)g_D(z, y)dy.
$$

Setting

$$
g_D^{(0)}(x,y) := (\mathcal{L}^{(x)} - \mathcal{L}^{(y)})G_D^{(y)}(\cdot,y)(x),
$$

we see that $g_D(x, y)$ should satisfy the following integral equation

$$
g_D(x, y) = g_D^{(0)}(x, y) + \int_D g_D^{(0)}(x, z) g_D(z, y) dz.
$$

 \leftarrow \Box \rightarrow

 \sim A э

ミメスヨメ

Applying the above equation recursively, it motives us to define

$$
g_D(x, y) := \sum_{k=0}^{\infty} g_D^{(k)}(x, y)
$$

whenever it converges, where

$$
g_D^{(k+1)}(x, y) := \int_D g_D^{(0)}(x, z) g_D^{(k)}(z, y) dz \quad \text{for } k \ge 0.
$$

4 0 3

Lemma 1:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0,Λ_0) . There exist constants $C_k = C_k(d, \lambda_0, \Lambda_0, R_0, \text{diam}(D)) \geq 1, k = 1, 2, 3$, such that for every $\lambda > 0$, $z \in \mathbb{R}^d$ and $x \neq y$ in λD ,

$$
G_{\lambda D}^{(z)}(x, y) \approx \frac{1}{|x - y|^{d - 2}} \left(1 \wedge \frac{\delta_{\lambda D}(x)}{|x - y|} \right) \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x - y|} \right);
$$

$$
|\nabla_x G_{\lambda D}^{(z)}(x, y)| \le \frac{C_2}{|x - y|^{d - 1}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x - y|} \right);
$$

$$
\left| \frac{\partial^2}{\partial x_i \partial x_j} G_{\lambda D}^{(z)}(x, y) \right| \le \frac{C_3}{|x - y|^{d}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x - y|} \right) \left(1 \wedge \frac{\delta_{\lambda D}(x)}{|x - y|} \right)^{-1}.
$$

Lemma 2:

There exist positive constants $\theta = \theta(d, \lambda_0, \ell, \Lambda_0, R_0, \text{diam}(D)) \in (0, 1)$ and $C = C(d, \lambda_0, \ell, \Lambda_0, R_0, \text{diam}(D))$ such that for any $\lambda \in (0, \theta],$

$$
g_{\lambda D}(x,y) := \sum_{k=0}^{\infty} g_{\lambda D}^{(k)}(x,y)
$$

converges absolutely and locally uniformly on $(\lambda D) \times (\lambda D)$ diag with

$$
|g_{\lambda D}(x,y)| \leq \sum_{k=0}^{\infty} |g_{\lambda D}^{(k)}(x,y)| \leq C \frac{\ell(|x-y|)}{|x-y|^d} \frac{\delta_{\lambda D}(y)}{\delta_{\lambda D}(x)} \quad \text{for } x \neq y \in \lambda D.
$$

$$
G_{\lambda D}(x,y)=G_{\lambda D}^{(y)}(x,y)+\int_{\lambda D}G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x\neq y\in \lambda D.
$$

• Define

$$
\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z) g_{\lambda D}(z,y) dz, \quad x \neq y \in \lambda D.
$$

For each $C_c^{\infty}(\lambda D)$ function ψ , $\widetilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \widetilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W^{2,p}_{loc}(\lambda D)$ for any $p>1$ and

$$
\begin{cases}\n\mathcal{L}\widetilde{G}_{\lambda D}\psi = -\psi \text{ in } \lambda D \\
\widetilde{G}_{\lambda D}\psi = 0 \text{ on } \partial(\lambda D).\n\end{cases}
$$

Once this is established, we can use mollifier and Ito's formula to show that $G_{\lambda D}(x, y)$ is the occupation density $G_{\lambda D}(x, y)$ of the diffusion process *X* associated with \mathcal{L} in $\lambda \mathcal{D}$. つくい

$$
G_{\lambda D}(x,y)=G_{\lambda D}^{(y)}(x,y)+\int_{\lambda D}G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x\neq y\in \lambda D.
$$

• Define

$$
\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z) g_{\lambda D}(z,y) dz, \quad x \neq y \in \lambda D.
$$

For each $C_c^{\infty}(\lambda D)$ function ψ , $\widetilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \widetilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W^{2,p}_{loc}(\lambda D)$ for any $p>1$ and

$$
\begin{cases}\n\mathcal{L}\widetilde{G}_{\lambda D}\psi = -\psi \text{ in } \lambda D \\
\widetilde{G}_{\lambda D}\psi = 0 \text{ on } \partial(\lambda D).\n\end{cases}
$$

Once this is established, we can use mollifier and Ito's formula to show that $G_{\lambda D}(x, y)$ is the occupation density $G_{\lambda D}(x, y)$ of the diffusion process *X* associated with \mathcal{L} in $\lambda \mathcal{D}$. つくい

$$
G_{\lambda D}(x,y)=G_{\lambda D}^{(y)}(x,y)+\int_{\lambda D}G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x\neq y\in \lambda D.
$$

• Define

$$
\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z) g_{\lambda D}(z,y) dz, \quad x \neq y \in \lambda D.
$$

For each $C_c^{\infty}(\lambda D)$ function ψ , $\widetilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \widetilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W^{2,p}_{loc}(\lambda D)$ for any $p > 1$ and

$$
\begin{cases}\n\mathcal{L}\widetilde{G}_{\lambda D}\psi = -\psi \text{ in } \lambda D \\
\widetilde{G}_{\lambda D}\psi = 0 \text{ on } \partial(\lambda D).\n\end{cases}
$$

Once this is established, we can use mollifier and Ito's formula to show that $G_{\lambda D}(x, y)$ is the occupation density $G_{\lambda D}(x, y)$ of the diffusion process *X* associated with \mathcal{L} in $\lambda \mathcal{D}$. つくい

$$
G_{\lambda D}(x,y)=G_{\lambda D}^{(y)}(x,y)+\int_{\lambda D}G_{\lambda D}^{(z)}(x,z)g_{\lambda D}(z,y)dz, \quad x\neq y\in \lambda D.
$$

• Define

$$
\widetilde{G}_{\lambda D}(x,y) := G_{\lambda D}^{(y)}(x,y) + \int_{\lambda D} G_{\lambda D}^{(z)}(x,z) g_{\lambda D}(z,y) dz, \quad x \neq y \in \lambda D.
$$

For each $C_c^{\infty}(\lambda D)$ function ψ , $\widetilde{G}_{\lambda D}\psi(x) := \int_{\lambda D} \widetilde{G}_{\lambda D}(x, y)\psi(y)dy$ is in $W^{2,p}_{loc}(\lambda D)$ for any $p > 1$ and

$$
\begin{cases}\n\mathcal{L}\widetilde{G}_{\lambda D}\psi = -\psi \quad \text{in} \quad \lambda D \\
\widetilde{G}_{\lambda D}\psi = 0 \quad \text{on} \quad \partial(\lambda D).\n\end{cases}
$$

Once this is established, we can use mollifier and Ito's formula to show that $G_{\lambda D}(x, y)$ is the occupation density $G_{\lambda D}(x, y)$ of the diffusion process *X* associated with $\mathcal L$ in λD .

By Levi's freezing formula, we obtain

Lemma:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exist positive constants $C = C(d, \lambda_0, \ell, R_0, \Lambda_0, \text{diam}(D))$ and $\theta =$ θ (*d*, λ_0 , ℓ , R_0 , Λ_0 , diam(*D*)) such that for any $\lambda \in (0, \theta]$,

$$
G_{\lambda D}(x, y) \le \frac{C}{|x - y|^{d-2}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x - y|} \right) \quad \text{on } (\lambda D) \times (\lambda D) \setminus \text{diag}
$$

and for any $\gamma > 1$,

$$
G_{\lambda D}(x,y) \ge \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x-y|}\right) \quad \text{on } |x-y| \le \gamma \delta_{\lambda D}(x).
$$

By Levi's freezing formula, we obtain

Lemma:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exist positive constants $C = C(d, \lambda_0, \ell, R_0, \Lambda_0, \text{diam}(D))$ and $\theta =$ θ (*d*, λ_0 , ℓ , R_0 , Λ_0 , diam(*D*)) such that for any $\lambda \in (0, \theta]$,

$$
G_{\lambda D}(x, y) \le \frac{C}{|x - y|^{d-2}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x - y|} \right) \quad \text{on } (\lambda D) \times (\lambda D) \setminus \text{diag}
$$

and for any $\gamma > 1$,

$$
G_{\lambda D}(x,y) \ge \frac{C}{|x-y|^{d-2}} \left(1 \wedge \frac{\delta_{\lambda D}(y)}{|x-y|}\right) \quad \text{on } |x-y| \le \gamma \delta_{\lambda D}(x).
$$

Boundary decay rate of $G_D(x, y)$ in x

• For each subdomain *V* with $D \setminus V \neq \emptyset$,

 $G_D(x, y) = \mathbb{E}_x [G_D(X_{\tau_V}, y); \tau_V < \tau_D]$ for every $x \in V$ and $y \in D\backslash \overline{V}$.

By the test function argument in Chen-Kim-Song-Vondracek(2012) for $\Delta + \Delta^{\alpha/2}$, we obtain

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . Let $\frac{R_0}{4\sqrt{1+\Lambda_0^2}}$. There are constants $\delta_0 = \delta_0(d, \lambda_0, R_0, \Lambda_0) \in (0, r_0)$ and $C_k =$ $C_k(d, \lambda_0, R_0, \Lambda_0)$, $k = 1, 2$, such that for any $\lambda_1 > 1, Q \in \partial D$, and $x \in$ $D_{\mathcal{O}}(\delta_0/\lambda_1, r_0/\lambda_1)$ with $\tilde{x} = 0$,

$$
\mathbb{P}_x\left(X_{\tau_{D_Q(\delta_0/\lambda_1,r_0/\lambda_1)}}\in D\right)\leq C_1\lambda_1\delta_D(x),
$$

 $\mathbb{P}_x\left(X_{\tau_{D_Q(\delta_0/\lambda_1,r_0/\lambda_1)}}\in U_Q(\delta_0/\lambda_1,r_0/\lambda_1)\right)\geq C_2\lambda_1\delta_D(x).$

Boundary decay rate of $G_D(x, y)$ in x

• For each subdomain *V* with $D \setminus V \neq \emptyset$,

 $G_D(x, y) = \mathbb{E}_x [G_D(X_{\tau_V}, y); \tau_V < \tau_D]$ for every $x \in V$ and $y \in D\backslash \overline{V}$.

• By the test function argument in Chen-Kim-Song-Vondracek(2012) for $\Delta + \Delta^{\alpha/2}$, we obtain

Lemma:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . Let $r_0 := \frac{R_0}{4\sqrt{1}}$ $\frac{R_0}{4\sqrt{1+\Lambda_0^2}}$. There are constants $\delta_0 = \delta_0(d, \lambda_0, R_0, \Lambda_0) \in (0, r_0)$ and $C_k =$ $C_k(d, \lambda_0, R_0, \Lambda_0)$, $k = 1, 2$, such that for any $\lambda_1 > 1, Q \in \partial D$, and $x \in$ $D_{\Omega}(\delta_0/\lambda_1, r_0/\lambda_1)$ with $\tilde{x} = 0$,

$$
\mathbb{P}_{x}\left(X_{\tau_{D_{Q}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})}}\in D\right)\leq C_{1}\lambda_{1}\delta_{D}(x),
$$

$$
\mathbb{P}_{x}\left(X_{\tau_{D_{Q}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})}}\in U_{Q}(\delta_{0}/\lambda_{1},r_{0}/\lambda_{1})\right)\geq C_{2}\lambda_{1}\delta_{D}(x).
$$

Theorem:

Suppose *D* is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics (R_0, Λ_0) . There exists a positive constant $C = C(d, \lambda_0, \ell, \Lambda_0, R_0, \text{diam}(D)) \geq 1$ and $\theta = \theta(d, \lambda_0, R_0, \Lambda_0, \text{diam}(D))$ such that for any $r \in (0, \theta]$,

 $C^{-1}G_{\lambda D}^{\Delta}(x, y) \leq G_{\lambda D}(x, y) \leq CG_{\lambda D}^{\Delta}(x, y)$ for $x \neq y \in \lambda D$.

Theorem:

Suppose D is a bounded $C^{1,1}$ domain in \mathbb{R}^d with characteristics $(R_0,\Lambda_0).$ There exists a positive constant $C = C(d, \lambda_0, \ell, \Lambda_0, R_0, \text{diam}(D)) \ge 1$

 $C^{-1}G_D^{\Delta}(x, y) \le G_D(x, y) \le CG_D^{\Delta}(x, y)$ for $x \ne y \in D$.

- By taking derivative on both sides of Levi's freezing formula, we can obtain the upper bounded estimate of the first derivative $|\nabla_x G_D(x, y)|$.
- However, this method does not work well for the second order derivative estimates on $G_D(x, y)$. We use the second derivative estimate

$$
|\nabla_x^2 G_B(x, y)| \le c|x - y|^{-d}
$$

on balls from Hwang-Kim(2020) and an integral representation of the Green function of $\mathcal L$ on small balls to obtain the upper bound estimate of the second order derivative $\left|D_x^2 G_D(x, y)\right|$.

- By taking derivative on both sides of Levi's freezing formula, we can obtain the upper bounded estimate of the first derivative $|\nabla_x G_D(x, y)|$.
- However, this method does not work well for the second order derivative estimates on $G_D(x, y)$. We use the second derivative estimate

$$
|\nabla_x^2 G_B(x, y)| \le c|x - y|^{-d}
$$

on balls from Hwang-Kim(2020) and an integral representation of the Green function of $\mathcal L$ on small balls to obtain the upper bound estimate of the second order derivative $\left|D_x^2 G_D(x, y)\right|$.

Thank you for your attention!

4. 17. 18